LACEWING

- 1. <u>C. carnea</u> is not effective as a predator of LH because it prefers to stay in weeds and other low-growing crops. This is the species typically reared and sold.
- 2. The native species, <u>C</u>. <u>commanche</u>, appears to have the potential of being very effective.
- 3. Lacewings from insectaries are poor performers vs. wild counterparts due to loss of vigor from in-breeding. There is 50% mortality of eggs applied in the field.
- 4. The use of lacewing feeding attractants to attract the native species appears to have tremendous potential.

PARASITES OF OLR

- 1. There are serious and unanswered questions regarding:
 - A) The viability and host preference of the $\underline{\text{Trichogramma}}$ spp. being released,
 - B) The number necessary for release per Acre to have a consistent and significant impact on OLR, and
 - C) The timing(s) for the releases for optimum impact on OLR.

IMPROVED SOIL HEALTH

SOIL-APPLIED PRODUCTS

- 1. Microbial-stimulating products.
- 2. Humic acid/humate products.
- 3. Dry manures/compost products.
- 4. Liquid chicken manure products.
- 5. Winter/summer cover crops.

SOIL HEALTH = PLANT HEALTH

OVERALL STRATEGY

- 1. Create and encourage BIODIVERSITY in your vineyards with summer insectary cover crops.
- 2. Improve the SOIL HEALTH in your vineyards.
- 3. Monitor closely both bad and good bugs.
- 4. Incorporate leaf-pulling in your cultural practices as much as is economically feasible.
- 5. Use materials "soft" on this biodiverse system, e.g. soaps, oils, botanicals, low rates of Omite, Vendex, rather than materials "hard" on this system.
- 6. Consider inundative releases of predaceous mites in chronic mite hot spots.

PREDATOR RELEASES

- 1. PREDACEOUS MITES
- 2. LACEWING
- 3. PARASITES FOR OLR

PREDACEOUS MITES

- 1. Effective release rate of $\underline{\text{M}}$, occidentalis for immediate impact is 30,000 per Acre at a cost of $\frac{1}{300}$ to $\frac{350}{300}$ per Acre.
- 2. Release rates of 5,000 per Acre per Year may be effective over time when combined with other "soft" strategies.
- 3. Method of releasing is critical. Clearly the most effective method of releasing the mites is placing whole or parts of bean plants on the vine.
- 4. The source of the predator mites is critical. All predator mites are not created equal.

LEAF-PULLING

- 1. Pull basal 3 or 4 leaves.
- 2. Significant impact on the incidence and severity of bunch rot.
- 3. May significantly impact LH and mite populations, particularly if the timing of the leaf-pulling is optimal.
- 4. Expensive.

BOTANICAL PESTICIDES

- 1. PYRENONE (Pyrethrins + PB)
- 2. PYRELLIN EC (Pyrethrins + Rotenone)
- 3. PYROCIDE (Pyrethrins + PB + MGK264)

CRITICAL FACTORS IN THEIR USE:

- 1. <u>COVERAGE</u> Must spray every row, 50-75 gpa, nozzled for maximum underleaf coverage.
- 2. TIMING FOR LH Works best on 1st to 3rd instar stages of LH but will kill 4th and 5th instars with full coverage.
- 3. TIME OF DAY Evening applications work best.
- 4. <u>DEPOSITION-ENHANCING ADJUVANTS</u> May improve performance, particularly one with a UV absorber.

BOTANICALS

- Effective against all instars of LH, particularly 1st through 3rd.
- No activity against mites but will kill predaceous mites.

Willamette mite motiles/leaf

TREATMENT	Pretreatment	6 DAT	13 DAT
SUPER INSECTICIDAL SOAP @ 1 qt/Ac.	3.1	4.0	11.8
SUPER INSECTICIDAL SOAP @ 2 qts/Ac.	7.1	11.8	-
M-PEDE @ 2%	6.7	30.9	
CONTROL	3.2	51.2	59.1
SAF-T-SIDE OIL @ 2%	2.8	2.8	24.2
SUPER SUFFOCANT OIL @ 0.5%	2.6	4.0	7.8

SUMMER OILS

- 1. SAF-T-SIDE OIL (registered for use in CA)
- 2. SUPER SUFFOCANT OIL (currently being registered in CA)

CRITICAL FACTORS IN THEIR USE:

- 1. $\underline{\text{COVERAGE}}$ Must spray every row, 50-75 gpa, nozzled for maximum underleaf coverage.
- 2. TIMING Not critical for mite control but may be for LH control.
- 3. PHYTOTOXICITY Does not appear to be a problem.

OILS

- Effective against mite motiles $\underline{\text{and eggs}}$. Effective against LH nymphs ?

INSECTICIDAL SOAPS

- 1. M-PEDE (registered for use in CA)
- 2. SUPER INSECTICIDAL SOAP (currently being registered in CA)

CRITICAL FACTORS IN THEIR USE:

- 1. <u>COVERAGE</u> Must spray every row, 50-75 gpa, nozzled for maximum underleaf coverage.
- 2. TIMING FOR LH Must spray when LH nymphs are in 1st to 3rd instar stages.
- 3. TIME OF DAY Evening applications work best.
- 4. <u>DEPOSITION-ENHANCING ADJUVANTS</u> These appear to improve performance of soaps by improving deposition.

M-PEDE

- Effective against early instar LH nymphs.
- Only suppressive against mite motiles.
- Appears to have little effect on LH or mite eggs.

SUPER INSECT. SOAP

- Appears to be effective against LH nymphs and mite motiles.
- Appears to have little effect on LH or mite eggs.

SUMMER COVER CROPS

- 1. Several types of insectary mixes and sources for the mixes.
- 2. Feasible for all types of irrigation systems.
- 3. Objective is to create and encourage:

BIODIVERSITY

FIELD-PROVEN CONTROL STRATEGIES

SUMMER COVER CROPS

INSECTICIDAL SOAPS

SUMMER OILS

BOTANICAL PESTICIDES

LEAF-PULLING

PREDATOR RELEASES

IMPROVE SOIL HEALTH

EXPERIMENTAL CONTROL STRATEGIES

LACEWING FEEDING ATTRACTANTS

WILLAMETTE MITE RELEASES

SOIL MICROBES AND COMPOUND 422

NEW ORGANIC PEST CONTROL SPRAY